Aker & Sylira
Как бы мы спроектировали протокол для безопасной интеграции искусственного нейроинтерфейса в неповрежденный человеческий мозг? Нужно учитывать как механическую устойчивость, так и долгосрочную биосовместимость.
First, map the brain’s micro‑topography with high‑resolution imaging—MRI combined with a micromanipulator that can sense tissue resistance. Then design the interface in a modular lattice, using carbon‑nanotube filaments that flex like muscle fibers; they lock into place by electrostatic bonding rather than screws, keeping mechanical strain low. For biocompatibility, coat every surface with a synthetic collagen‑like polymer that slowly degrades into non‑inflammatory by‑products, and embed a micro‑pump that releases anti‑scarring agents only when the local cytokine level spikes. Keep a tiny biosensor in the array to report impedance and temperature every few seconds. Finally, run a week of “home‑cage” trials with a volunteer and a backup neural net that can switch to a safe mode if the interface starts to corrode. That’s the outline—now let’s tweak the filament gauge.